

Low Intensity Extracorporeal Shock Wave Therapy for Female Stress Urinary Incontinence: A Single-Blind, Randomized-Controlled Trial

Anna Padoa, Eyal Levy, Roni Tomashev, Anna Tsviban, Tal Fligelman

Disclosures

- Hikkonu, a member of DirexGroup- study funding and travel support
- Pierre Fabre- speaker Honorarium
- Springer- royalties

Background

Stress urinary incontinence (SUI)

SUI is a prevalent urogynecological problem worldwide, with an estimate as high as 40% in adult women

 involuntary leakage of urine upon physical activity, such as exercise, exertion, sneezing, coughing, and lifting heavy objects, leading to affect a woman's physical, psychological and social activity, and impact on her quality of life

Management modalities:

Lifestyle intervention

Pelvic floor muscle training

Electro-stimulation

Vaginal devices and urethral inserts

Bulking agents

Mid-urethral slings and

colposuspension

Background

Clinical LiESWT (2000 to 3000 pulses in 0.20–0.25 mJ/mm2)

- enhances wound healing,
- promotes angiogenesis
- reduces the level of oxidative stress
- induces the releasing of vascular endothelial growth factor (VEGF)
- stimulates proliferation and differentiation of stem cells, with the effect of tissue

Therapeutic effects of Low intensity extracorporeal low energy shock wave therapy (LiESWT) on stress urinary incontinence

Cheng-Yu Long^{1,2,3,4,11}, Kun-Ling Lin^{1,4,11}, Yung-Chin Lee^{5,6,7}, Shu-Mien Chuang^{5,8}, Jian-He Lu^{5,7}, Bin-Nan Wu¹, Kuang-Shun Chueh^{5,10}, Chin-Ru Ker¹, Mei-Chen Shen⁵ & Yung-Shun Juan^{3,5,7,10*}

- single-arm, open- label, multicentre study
- 50 female patients with SUI
- once weekly for 4-weeks (W4) and 8-weeks (W8).
- 8-week of LiESWT treatment meaningfully improved urine leakage (pad test), maximum ow rate, post-voided residual urine, average urine volume, functional bladder capacity, urinary frequency, urgency symptom, and nocturia

Articl

Low Intensity Extracorporeal Shock Wave Therapy as a Novel Treatment for Stress Urinary Incontinence: A Randomized-Controlled Clinical Study

Kun-Ling Lin ^{1,2,3}, Kuang-Shun Chueh ^{1,4,5}, Jian-He Lu ⁶, Shu-Mien Chuang ^{4,7}, Bin-Nan Wu ⁸, Yung-Chin Lee ^{4,7,9}, Yi-Hsuan Wu ^{1,4,7}, Mei-Chen Shen ^{4,7}, Ting-Wei Sun ^{4,7}, Cheng-Yu Long ^{2,9,10,*} and Yung-Shun Juan ^{1,4,5,7,*}

- multicenter, single-blind, RCT
- 60 female patients with SUI randomized to LiSWT vs sham
- once weekly for 4-weeks (W4) and 8weeks (W8).

Eight weeks of LiESWT attenuated SUI symptoms upon physical activity, reduced urine leakage, and ameliorated overactive bladder symptoms,

Objective

The objective of the study was to assess safety and efficacy of LiESWT using a novel *trans-vaginal probe* for SUI and sexual function (SF).

Methods

- Design: single-blind, randomizedcontrolled trial
- IRB approval, informed consent
- Women with SUI were randomly assigned to
 - LiESWT with 0.1 mJ/mm² intensity, 1600 pulses, twice weekly for 4 weeks
 - Sham treatment, without energy transmission.
 - Treatment:sham ratio- 2:1

Both were administered by a vaginal probe (MoreNova^{FEM}, Hikkonu Medical Systems Ltd, Ramat Hasharon, Israel), designed to deliver the pulses towards the peri-urethral tissue

Methods

Efficacy at 1 month was evaluated using:

- Patient Global Impression of Improvement (PGI-I)
- Changes from baseline in scores of:
 - International Consultation on Incontinence, Short Form (ICI-Q-SF)
 - Urinary Distress Inventory (UDI-6)
 - Incontinence Impact Questionnaire (IIQ-7)
 - Cough-stress test
 - 1-hour pad test.
- SF was evaluated by the Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire, IUGA-Revised (PISQ-IR).

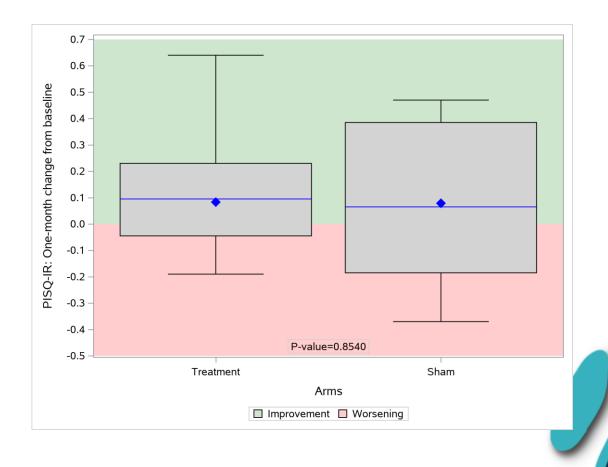
Table 1- Background data

Variables	Sham (N=9)	Treatment (N=18)	P Value
Age (Y)	46.4±9.8	50.1±8.6	0.3404
ВМІ	27.3±4.4	25.1±3.7	0.1729
Diabetes	0	2 (11.1)	0.1729
Hypertension	2 (22.2)	2 (11.1)	0.5815
Smoking	0	1 (5.6)	1.0000
Parity	3.0 (2.0-3.0)	3.0 (2.0–3.0)	0.8066
Post-menopausal	4 (44.4)	7 (38.9)	1.0000
HRT	0	1 (5.6)	1.0000
Vaginal Estrogen	0	2 (11.1)	0.5385

Table 2- Urogynecological data in the treatment and sham group before treatment

Variables	Sham (N=9)	Treatment (N=18)	P Value
Urinary incontinence			0.2950
Stress UI	6 (66.7)	16 (88.9)	
Mixed UI	3 (33.3)	2 (11.1)	
Positive cough-stress test	6 (66.7)	13 (81.3)	0.6300
One-hour pad test (Gr)	2.9±6.5	2.4±3.0	0.2642
ICI-Q	10.1±4.7	11.9±3.4	0.4690
UDI-6	39.4±15.2	37.4±14.7	0.8970
IIQ-7	13.7±13.9	28.7±23.4	0.0532
PISQ-IR	3.5±0.3	3.5±0.5	0.4809

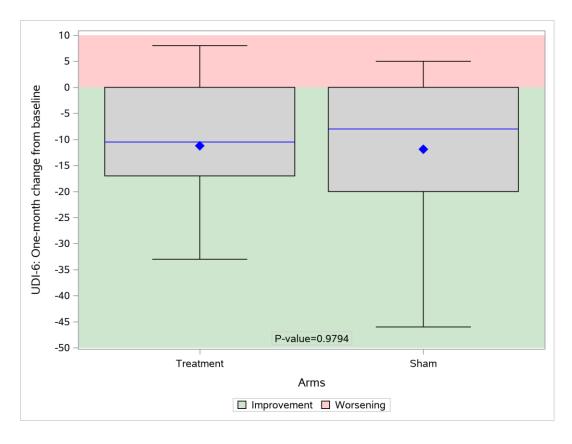
Table 1. Change in urinary incontinence and sexual function at 1-month follow-up between the 2 arms

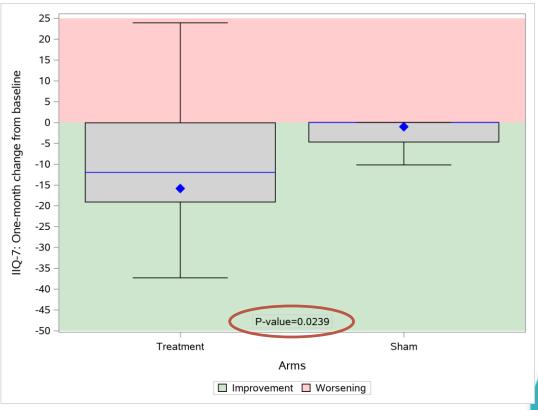

Variables	Sham (N=9)	Treatment (N=18)	P Value
Change in cough-stress test			
Positive pre-Tx, negative at 1 month	3 (33.3)	5 (33.3)	1.0000
Change in one-hour pad test (Gr)	-1.4±4.4	-0.3±3.4	0.8505
Change in ICI-Q	-2.7±1.9	-3.8±3.0	0.3484
Change in UDI-6	-11.9±15.6	-11.2±14.3	0.9794
Change in IIQ-7	-1.0±7.3	-15.9±25.8	0.0239
Change in PISQ-IR	0.1±0.3	0.1±0.3	0.8540
VAS for pain level (0-10)	0.1±0.3	0.6±1.0	0.2146

ICI-Q at 1 month

0 ICI-Q: One-month change from baseline -1 -2 -3 -4 -6 -7 -8 -9 P-value=0.3484 -10 Sham Treatment Arms ☐ Improvement ☐ Worsening

PISQ-IR at 1 month




SHAMIR MEDICAL CENTER

UDI-6 at 1 month

IIQ-7 at 1 month

SHAMIR MEDICAL CENTER

Possible procedure-related adverse events were mild and patients fully recovered:

- spotting (2 women, study group)
- UTI (1- study group, 1- sham)
- bacterial vaginosis (1- study group).

Conclusion

- LiESWT for SUI by a vaginal probe is well-tolerated and safe.
- Upon short-term follow-up, we observed significantly greater improvement in the impact of urinary incontinence in the study group, indicating LiESWT is a promising, energy-based alternative for SUI.

